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Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani)

1 Singular Value Decomposition for matrices

Using the previous discussion, we can write matrices in convenient form. Let A € C"*",
which can be thought of as an operator from C" to C". Let o7y,...,0; be the non-zero
singular values and let vy,...,v, and wy, ..., w, be the right and left singular vectors re-
spectively. Note that V = C"and W = C" and v € V,w € W, we can write the op-
erator |w) (v| as the matrix wv*, where v* denotes vT. This is because for any u € V,
wv*u = w(v*u) = (v,u) - w. Thus, we can write

r

A = Eai-wivf‘.
i=1

Let W € C"™*" be a matrix with w, ..., w, as columns, such that i column equals w;.

Similarly, let V' € C"*" be a matrix with v4,...,v, as the columns. Let ¥ € C"™" be a
diagonal matrix with X;; = ¢;. Then, check that the above expression for A can also be
written as
A=WXV*
wl wr
(o] Z)T
oy vy

where V* = VT as before.

We can also complete the bases {vy,...,v,} and {ws,...,w,} to bases for C" and C" re-
spectively and write the above in terms of unitary matrices.



Definition 1.1 A matrix U € C"*" is known as a unitary matrix if the columns of U form an
orthonormal basis for C".

Proposition 1.2 Let U € C"*" be a unitary matrix. Then UU* = U*U = id, where id denotes
the identity matrix.

Let {v1,...,v,} be a completion of {v,...,v,} to an orthonormal basis of C", and let V,, €
C"*" be a unitary matrix with {vy,...,v,} as columns. Similarly, let W,, € C"™*" be a
unitary matrix with a completion of {wy, ..., w,} as columns. Let X’ € C"*" be a matrix
with X, = 0; if i < r, and all other entries equal to zero. Then, we can also write

A=W,2'V}

w1 Wy Wr+1 Wm

01

2 Low-rank approximation for matrices

Given a matrix A € C"*", we want to find a matrix B of rank at most k which “approxi-
mates” A. For now we will consider the notion of approximation in spectral norm i.e., we
want to minimize ||A — B||,, where

[(a-B)l, = max 14Dl
v#0 0]l

Here, ||v||, = +/(v,v) denotes the norm defined by the standard inner product on C". The
2 in the notation ||-||, comes from the expression we get by expressing v in the orthonormal

1/2
basis of the coordinate vectors. If v = (cy,...,¢,)7, then ||o]|, = (Zle |Ci\2) which is

simply the Euclidean norm we are familiar with L. Note that while the norm here seems

In general, one can consider the norm loll, == (2 |eil? )1/ P for any p > 1. While these are indeed valid
notions of distance satisfying a triangle inequality for any p > 1, they do not arise as a square root of an inner
product when p # 2.



to be defined in terms of the coefficients, which indeed depend on the choice of the or-
thonormal basis, the value of the norm is in fact \/ (v, v) which is just a function of the vector
itself and not of the basis we are working with. The basis and the coefficients merely provide a
convenient way of computing the norm.

SVD also gives the optimal solution for another notion of approximation: minimizing the
Frobenius norm ||A — B||y, which equals (¥;(A; — Bij)z)l/z. We will see this later. Let
A = Y|, w;iv} be the singular value decomposition of Aand leto; > --- >0, > 0. Ifk > 7,
we can simply use B = A since rank(A) = r. If k < r, we claim that Ay = Y, o;w;v; is
the optimal solution.

Proposition 2.1 ||A — Ag|l, = 0Ok1.

Proof: Complete vy,..., v to an orthonormal basis vy, ...,v, for C". Given any v € C",
we can uniquely express it as } ;' ; ¢; - v; for appropriate coefficients cy, ..., c,. Thus, we
have

n r n r
a-ago= (£ gows) (Eon) = L Foo o) = § o,
i=1

j=k+1 j=k+1i=1 j=k+1

where the last equality uses the orthonormality of {v;,...,v,}. We can also complete
w1y, ..., W, to an orthonormal basis wy, . .., w,, for C™. Since (A — Ay) is already expressed
in this basis above, we get that

I(A = Aol =

Z Cj0j - w]

j=k+1

2 r r v
2
= < Y ciojwj, Y Cj‘fj'wj> = ) |l

j=k+1 j=k+1 j=k+1

Finally, as in the computation with Rayleigh quotients, we have that for any v # 0 ex-
pressedasv =Y ;¢ v,

2 - 2
1(A— Aol Lk o] ] < ik 6] ot 2
2 - n 2 = n 2 = Yk+1-
lo]2 Y el Y el
This gives that ||A — Ag||, < 0k4+1. Check that it is in fact equal to o1 (Why?) [ ]

In fact the proof above actually shows the following:

Exercise 2.2 Let M € C™*" be any matrix with singular values o4 > - - - 0 > 0. Then, |M||, =
oy i.e., the spectral norm of a matrix is actually equal to its largest singular value.

Thus, we know that the error of the best approximation B is at most 0j1. To show the
lower bound, we need the following fact.



Exercise 2.3 Let V be a finite-dimensional vector space and let S1,S, be subspaces of V. Then,
S1 M Sy is also a subspace and satisfies

dim(51 N 52) > dlm(Sl) + dlm(SZ) — dlm(V) .
We can now show the following.

Proposition 2.4 Let B € C"™*" have rank(B) < k and let k < r. Then ||A — B||, > 0y1.

Proof: By rank-nullity theorem dim(ker(B)) > n — k. Thus, by the fact above
dim (ker(B) NSpan (v1,...,0k41)) > (n—k)+(k+1)—n > 1.
Thus, there exists a z € ker(B) N Span (vy,...,vk41) \ {0}. Then,
I(A=BIR = AzI3 = (A"Az) = Raa(z) - |21
min - Raeal)) 213

(yespan(vlr~ka+l)\{0}
2
> o zllz -

>

Thus, there exists a z # 0 such that || (A — B)z||, > 041 - ||z]|,, which implies ||A — B||, >
Ok+1- u
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