Lecture 7: October 21, 2024

Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani)

1 Singular Value Decomposition for matrices

Using the previous discussion, we can write matrices in convenient form. Let $A \in \mathbb{C}^{m \times n}$, which can be thought of as an operator from \mathbb{C}^n to \mathbb{C}^m . Let $\sigma_1, \ldots, \sigma_r$ be the non-zero singular values and let v_1, \ldots, v_r and w_1, \ldots, w_r be the right and left singular vectors respectively. Note that $V = \mathbb{C}^n$ and $W = \mathbb{C}^m$ and $v \in V, w \in W$, we can write the operator $|w\rangle \langle v|$ as the matrix wv^* , where v^* denotes $\overline{v^T}$. This is because for any $u \in V$, $wv^*u = w(v^*u) = \langle v, u \rangle \cdot w$. Thus, we can write

$$A = \sum_{i=1}^r \sigma_i \cdot w_i v_i^* \, .$$

Let $W \in \mathbb{C}^{m \times r}$ be a matrix with w_1, \ldots, w_r as columns, such that i^{th} column equals w_i . Similarly, let $V \in \mathbb{C}^{n \times r}$ be a matrix with v_1, \ldots, v_r as the columns. Let $\Sigma \in \mathbb{C}^{r \times r}$ be a diagonal matrix with $\Sigma_{ii} = \sigma_i$. Then, check that the above expression for A can also be written as

where $V^* = \overline{V^T}$ as before.

We can also complete the bases $\{v_1, ..., v_r\}$ and $\{w_1, ..., w_r\}$ to bases for \mathbb{C}^n and \mathbb{C}^m respectively and write the above in terms of unitary matrices.

Fall 2024

Definition 1.1 A matrix $U \in \mathbb{C}^{n \times n}$ is known as a unitary matrix if the columns of U form an orthonormal basis for \mathbb{C}^n .

Proposition 1.2 Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix. Then $UU^* = U^*U = id$, where id denotes the identity matrix.

Let $\{v_1, \ldots, v_n\}$ be a completion of $\{v_1, \ldots, v_r\}$ to an orthonormal basis of \mathbb{C}^n , and let $V_n \in \mathbb{C}^{n \times n}$ be a unitary matrix with $\{v_1, \ldots, v_n\}$ as columns. Similarly, let $W_m \in \mathbb{C}^{m \times m}$ be a unitary matrix with a completion of $\{w_1, \ldots, w_r\}$ as columns. Let $\Sigma' \in \mathbb{C}^{m \times n}$ be a matrix with $\Sigma'_{ii} = \sigma_i$ if $i \leq r$, and all other entries equal to zero. Then, we can also write

2 Low-rank approximation for matrices

Given a matrix $A \in \mathbb{C}^{m \times n}$, we want to find a matrix *B* of rank at most *k* which "approximates" *A*. For now we will consider the notion of approximation in spectral norm i.e., we want to minimize $||A - B||_2$, where

$$\|(A-B)\|_2 = \max_{v \neq 0} \frac{\|(A-B)v\|_2}{\|v\|_2}.$$

Here, $||v||_2 = \sqrt{\langle v, v \rangle}$ denotes the norm defined by the standard inner product on \mathbb{C}^n . The 2 in the notation $||\cdot||_2$ comes from the expression we get by expressing v in the orthonormal basis of the coordinate vectors. If $v = (c_1, \ldots, c_n)^T$, then $||v||_2 = \left(\sum_{i=1}^n |c_i|^2\right)^{1/2}$ which is simply the Euclidean norm we are familiar with ¹. Note that while the norm here seems

¹In general, one can consider the norm $||v||_p := (\sum_{i=1}^n |c_i|^p)^{1/p}$ for any $p \ge 1$. While these are indeed valid notions of distance satisfying a triangle inequality for any $p \ge 1$, they do not arise as a square root of an inner product when $p \ne 2$.

to be defined in terms of the coefficients, which indeed depend on the choice of the orthonormal basis, the value of the norm is in fact $\sqrt{\langle v, v \rangle}$ which is just a function of the vector itself and not of the basis we are working with. The basis and the coefficients merely provide a convenient way of computing the norm.

SVD also gives the optimal solution for another notion of approximation: minimizing the Frobenius norm $||A - B||_F$, which equals $(\sum_{ij} (A_{ij} - B_{ij})^2)^{1/2}$. We will see this later. Let $A = \sum_{i=1}^r w_i v_i^*$ be the singular value decomposition of A and let $\sigma_1 \ge \cdots \ge \sigma_r > 0$. If $k \ge r$, we can simply use B = A since rank(A) = r. If k < r, we claim that $A_k = \sum_{i=1}^k \sigma_i w_i v_i^*$ is the optimal solution.

Proposition 2.1 $||A - A_k||_2 = \sigma_{k+1}$.

Proof: Complete v_1, \ldots, v_k to an orthonormal basis v_1, \ldots, v_n for \mathbb{C}^n . Given any $v \in \mathbb{C}^n$, we can uniquely express it as $\sum_{i=1}^n c_i \cdot v_i$ for appropriate coefficients c_1, \ldots, c_n . Thus, we have

$$(A-A_k)v = \left(\sum_{j=k+1}^r \sigma_j \cdot w_j v_j^*\right) \left(\sum_{i=1}^n c_i \cdot v_i\right) = \sum_{j=k+1}^r \sum_{i=1}^n c_i \sigma_j \cdot \langle v_j, v_i \rangle \cdot w_j = \sum_{j=k+1}^r c_j \sigma_j \cdot w_j,$$

where the last equality uses the orthonormality of $\{v_1, \ldots, v_n\}$. We can also complete w_1, \ldots, w_r to an orthonormal basis w_1, \ldots, w_m for \mathbb{C}^m . Since $(A - A_k)$ is already expressed in this basis above, we get that

$$\|(A - A_k)v\|_2^2 = \left\|\sum_{j=k+1}^r c_j \sigma_j \cdot w_j\right\|_2^2 = \left\|\sum_{j=k+1}^r c_j \sigma_j \cdot w_j, \sum_{j=k+1}^r c_j \sigma_j \cdot w_j\right\|_2^2 = \sum_{j=k+1}^r |c_j|^2 \cdot \sigma_j^2.$$

Finally, as in the computation with Rayleigh quotients, we have that for any $v \neq 0$ expressed as $v = \sum_{i=1}^{n} c_i \cdot v_i$,

$$\frac{\|(A-A_k)v\|_2^2}{\|v\|_2^2} = \frac{\sum_{j=k+1}^r |c_j|^2 \cdot \sigma_j^2}{\sum_{i=1}^n |c_i|^2} \le \frac{\sum_{j=k+1}^r |c_j|^2 \cdot \sigma_{k+1}^2}{\sum_{i=1}^n |c_i|^2} \le \sigma_{k+1}^2$$

This gives that $||A - A_k||_2 \le \sigma_{k+1}$. Check that it is in fact equal to σ_{k+1} (why?)

In fact the proof above actually shows the following:

Exercise 2.2 Let $M \in \mathbb{C}^{m \times n}$ be any matrix with singular values $\sigma_1 \ge \cdots \sigma_r > 0$. Then, $||M||_2 = \sigma_1$ *i.e., the spectral norm of a matrix is actually equal to its largest singular value.*

Thus, we know that the error of the best approximation *B* is at most σ_{k+1} . To show the lower bound, we need the following fact.

Exercise 2.3 Let V be a finite-dimensional vector space and let S_1, S_2 be subspaces of V. Then, $S_1 \cap S_2$ is also a subspace and satisfies

$$\dim(S_1 \cap S_2) \geq \dim(S_1) + \dim(S_2) - \dim(V).$$

We can now show the following.

Proposition 2.4 Let $B \in \mathbb{C}^{m \times n}$ have rank $(B) \leq k$ and let k < r. Then $||A - B||_2 \geq \sigma_{k+1}$.

Proof: By rank-nullity theorem dim $(\ker(B)) \ge n - k$. Thus, by the fact above

dim
$$(\ker(B) \cap \text{Span}(v_1, \dots, v_{k+1})) \ge (n-k) + (k+1) - n \ge 1$$

Thus, there exists a $z \in \text{ker}(B) \cap \text{Span}(v_1, \dots, v_{k+1}) \setminus \{0\}$. Then,

$$\begin{aligned} \|(A-B)z\|_{2}^{2} &= \|Az\|_{2}^{2} &= \langle z, A^{*}Az \rangle = \mathcal{R}_{A^{*}A}(z) \cdot \|z\|_{2}^{2} \\ &\geq \left(\min_{y \in \operatorname{Span}(v_{1},...,v_{k+1}) \setminus \{0\}} \mathcal{R}_{A^{*}A}(y)\right) \cdot \|z\|_{2}^{2} \\ &\geq \sigma_{k+1}^{2} \cdot \|z\|_{2}^{2} \,. \end{aligned}$$

Thus, there exists a $z \neq 0$ such that $||(A - B)z||_2 \ge \sigma_{k+1} \cdot ||z||_2$, which implies $||A - B||_2 \ge \sigma_{k+1}$.