
Mathematical Toolkit Fall 2024
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Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani)

1 Singular Value Decomposition for matrices

Using the previous discussion, we can write matrices in convenient form. Let A ∈ Cm×n,
which can be thought of as an operator from Cn to Cm. Let σ1, . . . , σr be the non-zero
singular values and let v1, . . . , vr and w1, . . . , wr be the right and left singular vectors re-
spectively. Note that V = Cn and W = Cm and v ∈ V, w ∈ W, we can write the op-
erator |w〉 〈v| as the matrix wv∗, where v∗ denotes vT. This is because for any u ∈ V,
wv∗u = w(v∗u) = 〈v, u〉 · w. Thus, we can write

A =
r

∑
i=1

σi · wiv∗i .

Let W ∈ Cm×r be a matrix with w1, . . . , wr as columns, such that ith column equals wi.
Similarly, let V ∈ Cn×r be a matrix with v1, . . . , vr as the columns. Let Σ ∈ Cr×r be a
diagonal matrix with Σii = σi. Then, check that the above expression for A can also be
written as

A = WΣV∗

=




· · ·

w1 wr

σ1
. . .

σr





...

v∗1

v∗r

where V∗ = VT as before.

We can also complete the bases {v1, . . . , vr} and {w1, . . . , wr} to bases for Cn and Cm re-
spectively and write the above in terms of unitary matrices.
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Definition 1.1 A matrix U ∈ Cn×n is known as a unitary matrix if the columns of U form an
orthonormal basis for Cn.

Proposition 1.2 Let U ∈ Cn×n be a unitary matrix. Then UU∗ = U∗U = id, where id denotes
the identity matrix.

Let {v1, . . . , vn} be a completion of {v1, . . . , vr} to an orthonormal basis of Cn, and let Vn ∈
Cn×n be a unitary matrix with {v1, . . . , vn} as columns. Similarly, let Wm ∈ Cm×m be a
unitary matrix with a completion of {w1, . . . , wr} as columns. Let Σ′ ∈ Cm×n be a matrix
with Σ′ii = σi if i ≤ r, and all other entries equal to zero. Then, we can also write

A = WmΣ′V∗n

=




· · · · · ·

w1 wr wr+1 wm

σ1
. . .

σr

0
. . .

0









...

...

v∗1

v∗r
v∗r+1

v∗n

2 Low-rank approximation for matrices

Given a matrix A ∈ Cm×n, we want to find a matrix B of rank at most k which “approxi-
mates” A. For now we will consider the notion of approximation in spectral norm i.e., we
want to minimize ‖A− B‖2, where

‖(A− B)‖2 = max
v 6=0

‖(A− B)v‖2
‖v‖2

.

Here, ‖v‖2 =
√
〈v, v〉 denotes the norm defined by the standard inner product on Cn. The

2 in the notation ‖·‖2 comes from the expression we get by expressing v in the orthonormal

basis of the coordinate vectors. If v = (c1, . . . , cn)T, then ‖v‖2 =
(

∑n
i=1 |ci|2

)1/2
which is

simply the Euclidean norm we are familiar with 1. Note that while the norm here seems

1In general, one can consider the norm ‖v‖p :=
(
∑n

i=1 |ci|p
)1/p for any p ≥ 1. While these are indeed valid

notions of distance satisfying a triangle inequality for any p ≥ 1, they do not arise as a square root of an inner
product when p 6= 2.
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to be defined in terms of the coefficients, which indeed depend on the choice of the or-
thonormal basis, the value of the norm is in fact

√
〈v, v〉 which is just a function of the vector

itself and not of the basis we are working with. The basis and the coefficients merely provide a
convenient way of computing the norm.

SVD also gives the optimal solution for another notion of approximation: minimizing the
Frobenius norm ‖A− B‖F, which equals (∑ij(Aij − Bij)

2)1/2. We will see this later. Let
A = ∑r

i=1 wiv∗i be the singular value decomposition of A and let σ1 ≥ · · · ≥ σr > 0. If k ≥ r,
we can simply use B = A since rank(A) = r. If k < r, we claim that Ak = ∑k

i=1 σiwiv∗i is
the optimal solution.

Proposition 2.1 ‖A− Ak‖2 = σk+1.

Proof: Complete v1, . . . , vk to an orthonormal basis v1, . . . , vn for Cn. Given any v ∈ Cn,
we can uniquely express it as ∑n

i=1 ci · vi for appropriate coefficients c1, . . . , cn. Thus, we
have

(A−Ak)v =

(
r

∑
j=k+1

σj · wjv∗j

)(
n

∑
i=1

ci · vi

)
=

r

∑
j=k+1

n

∑
i=1

ciσj ·
〈
vj, vi

〉
·wj =

r

∑
j=k+1

cjσj ·wj ,

where the last equality uses the orthonormality of {v1, . . . , vn}. We can also complete
w1, . . . , wr to an orthonormal basis w1, . . . , wm for Cm. Since (A− Ak) is already expressed
in this basis above, we get that

‖(A− Ak)v‖2
2 =

∥∥∥∥∥ r

∑
j=k+1

cjσj · wj

∥∥∥∥∥
2

2

=

〈
r

∑
j=k+1

cjσj · wj,
r

∑
j=k+1

cjσj · wj

〉
=

r

∑
j=k+1

∣∣cj
∣∣2 · σ2

j .

Finally, as in the computation with Rayleigh quotients, we have that for any v 6= 0 ex-
pressed as v = ∑n

i=1 ci · vi,

‖(A− Ak)v‖2
2

‖v‖2
2

=
∑r

j=k+1

∣∣cj
∣∣2 · σ2

j

∑n
i=1 |ci|2

≤
∑r

j=k+1

∣∣cj
∣∣2 · σ2

k+1

∑n
i=1 |ci|2

≤ σ2
k+1 .

This gives that ‖A− Ak‖2 ≤ σk+1. Check that it is in fact equal to σk+1 (why?)

In fact the proof above actually shows the following:

Exercise 2.2 Let M ∈ Cm×n be any matrix with singular values σ1 ≥ · · · σr > 0. Then, ‖M‖2 =
σ1 i.e., the spectral norm of a matrix is actually equal to its largest singular value.

Thus, we know that the error of the best approximation B is at most σk+1. To show the
lower bound, we need the following fact.
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Exercise 2.3 Let V be a finite-dimensional vector space and let S1, S2 be subspaces of V. Then,
S1 ∩ S2 is also a subspace and satisfies

dim(S1 ∩ S2) ≥ dim(S1) + dim(S2)− dim(V) .

We can now show the following.

Proposition 2.4 Let B ∈ Cm×n have rank(B) ≤ k and let k < r. Then ‖A− B‖2 ≥ σk+1.

Proof: By rank-nullity theorem dim(ker(B)) ≥ n− k. Thus, by the fact above

dim (ker(B) ∩ Span (v1, . . . , vk+1)) ≥ (n− k) + (k + 1)− n ≥ 1 .

Thus, there exists a z ∈ ker(B) ∩ Span (v1, . . . , vk+1) \ {0}. Then,

‖(A− B)z‖2
2 = ‖Az‖2

2 = 〈z, A∗Az〉 = RA∗A(z) · ‖z‖2
2

≥
(

min
y∈Span(v1,...,vk+1)\{0}

RA∗A(y)
)
· ‖z‖2

2

≥ σ2
k+1 · ‖z‖

2
2 .

Thus, there exists a z 6= 0 such that ‖(A− B)z‖2 ≥ σk+1 · ‖z‖2, which implies ‖A− B‖2 ≥
σk+1.
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